Objective Metrics for Quantifying Monofocal and Presbyopia-Correcting IOL Contrast Performance

Authors

Daniel H. Chang, MD, ABO (Presenting Author) Henk A. Weeber, PhD Tawnya Pastuck, OD Patricia A. Piers, PhD

Disclosures

Daniel H. Chang, MD, ABO (Presenting Author): Consultant to Johnson & Johnson Surgical Vision, Inc Henk A. Weeber, PhD: Employee of Johnson and Johnson Surgical Vision, Inc Tawnya Pastuck, OD: Employee of Johnson and Johnson Surgical Vision, Inc Patricia A. Piers, PhD: Employee of Johnson and Johnson Surgical Vision, Inc

Purpose

The purpose of this study is to evaluate the objective metrics for quantifying monofocal and presbyopia-correcting IOL contrast performance in both day and night conditions.

- With increasing age, decreasing contrast sensitivity may impact patient safety.¹⁻³
- Study results highlight a previously unappreciated association between older adults' <u>mesopic</u> contrast sensitivity deficits and crash involvement regardless of the time of day.³
- This puts the emphasis on the contrast performance of IOLs for larger pupil sizes.

- 1. Black, A., & Wood, J. (2005). Vision and falls. Clin Exp Optom, 88 (4), 212-222.
- 2. Feng, Y.R., Meuleners, L., Stevenson, M., Heyworth, J., Murray, K., Fraser, M., & Maher, S. (2021). Driving exposure, patterns and safety critical events for older drivers with and without mild cognitive impairment: Findings from a naturalistic driving study. Accid Anal Prev, 151, 105965.
- Owsley, C., Swain, T., Liu, R., McGwin, G., Jr., & Kwon, M.Y. (2020). Association of Photopic and Mesopic Contrast Sensitivity in older drivers with risk of motor vehicle collision using naturalistic driving data. BMC Ophthalmol, 20 (1), 47.

Methods

- Modulation transfer function (MTF) was measured under clinically relevant conditions.¹
- Through focus and frequency MTF was measured in white light for 3mm pupil in an eye model that reproduces average corneal spherical and corneal chromatic aberrations.^{1,2}
- MTF at both 3mm (photopic) and 5mm (mesopic) pupil diameters were recorded.
- IOL models included in this study were: Tecnis 1-Piece, Tecnis Eyhance, and Acrysof IQ monofocal IOLs

Tecnis Symfony Optiblue and Acrysof Vivity EDOF IOLs

Tecnis Multifocal +3.25, Acrysof Restor +3.0, Acrysof Panoptix multi/trifocal IOLs, and Tecnis Synergy IOLs

1. Weeber HA, Cánovas C, Alarcón A, Piers P. (2016). Laboratory-Measured MTF of IOLs and Clinical Performance. *J. Refract. Surg.* 32(3), 211–212.

2. Norrby S, Piers P, Campbell C, van der Mooren M. (2007). Model eyes for evaluation of intraocular lenses. *Appl Opt* 46:6595–6605.

Modulation transfer function (MTF) is a measure of the contrast of the image in the eye.

In a pre-clinical setting, it is the measure of contrast of the image of a model eye containing the IOL under test.

Measured image contrast of monofocal IOLs

Photopic (small pupil) MTF varies by lens model. Highest and lowest MTF differ by a factor 1.2X.

Mesopic (large pupil) MTF varies greatly by lens model. Highest and lowest MTF differ by a factor 1.5X.

Measured image contrast of EDOF IOLs

Photopic (small pupil) MTF varies greatly by lens model. Highest and lowest MTF differ by a factor 1.7X.

Mesopic (large pupil) MTF varies greatly by lens model. Highest and lowest MTF differ by a factor 1.9X.

Measured image contrast of PC IOLs

Photopic (small pupil) MTF varies by lens model. Highest and lowest MTF differ by a factor 1.3X.

Mesopic (large pupil) MTF varies greatly by lens model. Highest and lowest MTF differ by a factor 2.7X.

Results

Combining a *range* **of spatial frequencies**

- MTF over a range of spatial frequencies are integrated to create the area under the MTF curve (MTFarea or MTFa).
- MTFa through 50 cycles per mm has shown a consistent correlation to visual acuity (VA) for a range of lens materials and designs.¹

 Alarcon, A., Canovas, C., Rosen, R., Weeber, H., Tsai, L., Hileman, K., & Piers, P. (2016). Preclinical metrics to predict through-focus visual acuity for pseudophakic patients. *Biomedical optics express*, 7(5), 1877-1888.

Defocus curve of MTFarea, showing the differences between a bifocal lens, an extended depth of focus lens, and a PC lens combining both technologies

Correlation between optical bench and clinical VA¹

Results

TECNIS Symfony vs Vivity

Simulated Visual Acuity (sVA)

Simulated visual acuity (sVA) predicted: similar Far visual acuity. Intermediate and Near visual acuity of at least one-half line higher for TECNIS Symfony demonstrating a greater range of vision for this EDOF IOL.

Clinical Visual Acuity¹

Clinical defocus curves revealed greater differences between both EDOF IOLs through the complete defocus curve, with more than half a line improvement at intermediate and one line at near for TECNIS Symfony.

Results

Visual acuity and defocus curves of presbyopia-correcting IOLs covering the full range of vision

Simulated Visual Acuity (sVA)

Simulated visual acuity (sVA) predicted visual acuities better for TECNIS Synergy at all distances, reaching one-half line at near demonstrating in a greater range of vision for this IOL.

Clinical defocus curves revealed a consistent difference between both PC IOLs throughout the complete defocus curve, with approximately half a line improvement for TECNIS Synergy.

- MTF (contrast) was measured over a range of defocus values, over a range of frequencies, for various pupil sizes, and for three categories of IOLs: monofocal IOLs, EDOF IOLs, and presbyopia-correcting IOLs covering the full range of vision.
- MTF varied widely between the different lens models, especially for the larger pupil sizes (mesopic conditions).
- Within categories, the presbyopia-correcting IOL with the highest MTF showed a value 2.7 times greater than that of the presbyopia-correcting IOL having the lowest MTF.
- MTFarea (MTFa) provides a robust method for evaluating IOL performance and contrast over a range of defocus for monofocal IOLs, EDOF IOLs, and presbyopia-correcting IOLs covering the full range of vision.
- EDOF IOLs and presbyopia-correcting IOLs covering the full range of vision can exhibit differences of up to a line in simulated VA and half a line in clinical defocus curve testing.